Abstract
Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25-60 TW, 30 fs laser pulses focused into a 3-4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250-430 MeV electron bunches with a low-energy spread, ∼10 pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear focus of the laser pulse within the plasma suppresses continuous injection, thus reducing the low-energy tail of the electron beam. Published by the American Physical Society Published by the American Physical Society under the terms of the xlink:href=http:// creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Original language | English (US) |
---|---|
Article number | 031302 |
Journal | Physical Review Special Topics - Accelerators and Beams |
Volume | 16 |
Issue number | 3 |
DOIs | |
State | Published - Mar 25 2013 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)
- Surfaces and Interfaces