Structure - Activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid

Bihua Feng, Heong W. Tse, Donald A. Skifter, Richard Morley, David E. Jane, Daniel T. Monaghan

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

1. (2S*,3R*)-1-(biphenyl-4-carbonyl)piperazine-2, 3-dicarboxylic acid (PBPD) is a moderate affinity, competitive N-methyl-D-aspartate (NMDA) receptor antagonist with an atypical pattern of selectivity among NMDA receptor 2 subunit (NR2) subunits. We now describe the activity of several derivatives of PBPD tested at both rat brain NMDA receptors using L-[ 3H]-glutamate binding assays and at recombinant receptors expressed in Xenopus oocytes. 2. Substituting various branched ring structures for the biphenyl group of PBPD reduced NMDA receptor activity. However, substituting linearly arranged ring structures - fluorenone or phenanthrene groups - retained or enhanced activity. 3. Relative to PBPD, the phenanthrene derivative (2S*,3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3- dicarboxylic acid (PPDA) displayed a 30- to 78-fold increase in affinity for native NMDA receptors. At recombinant receptors, PPDA displayed a 16-fold (NR2B) to 94-fold (NR2C) increase in affinity over PBPD. 4. Replacement of the biphenyl group of PBPD with a 9-oxofluorene ring system resulted in small changes in receptor affinity and subtype selectivity. 5. 2′-Bromo substitution on the biphenyl group of PBPD reduced antagonist affinity 3- to 5-fold at NR2A-, NR2B- and NR2D-containing receptors, but had little effect on NR2C-containing receptors. In contrast, 4′-fluoro substitution of the biphenyl ring of PBPD selectively increased NR2A affinity. 6. The aromatic rings of PBPD and PPDA increase antagonist affinity and appear to interact with a region of the NMDA receptor displaying subunit heterogeneity, PPDA is the most potent and selective NR2C/NR2D-preferring antagonist yet reported and thus may be useful in defining NR2C/ NR2D function and developing related antagonists with improved NMDA receptor subtype selectivity.

Original languageEnglish (US)
Pages (from-to)508-516
Number of pages9
JournalBritish Journal of Pharmacology
Volume141
Issue number3
DOIs
StatePublished - Feb 2004

Keywords

  • Antagonist
  • Autoradiography
  • NMDA receptor
  • NR2
  • NR2C
  • NR2D
  • Recombinant
  • Xenopus oocyte

ASJC Scopus subject areas

  • Pharmacology

Fingerprint Dive into the research topics of 'Structure - Activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid'. Together they form a unique fingerprint.

Cite this