Structure-activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals

Tamra J. Fisher, Yunyun Zhou, Tai Sing Wu, Meiyu Wang, Yun Liang Soo, Chin Li Cheung

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Reactive oxygen species (ROS) are powerful oxidants generated in both biological systems and natural environments. Though enzyme-mimic activity and Fenton-like reactions have been postulated to explain how ceria nanoparticles and ROS are involved in the catalytic decomposition of hydrogen peroxide (H 2 O 2 ), the corresponding reaction kinetics for this reaction have not yet been completely resolved. Here we present our investigation of the structure-activity relationship of ceria nanostructures for the generation of hydroxyl radicals through the catalytic decomposition of H 2 O 2 . Different nanostructured ceria including nanorods (NR), nanocubes (NC), and nanooctahedra (NO), together with commercial ceria, were examined to elucidate the relationship between the morphology and reaction kinetics. The initial relative production rates of hydroxyl radicals over different ceria nanostructures were determined using fluorescence measurements and were applied to obtain the apparent activation energy for their intrinsic activity comparisons. The activity trend of the order: ceria NR > ceria NC > ceria NO > commercial ceria was observed. This trend was rationalized and assessed using activity descriptive factors including the intensity ratio of Raman bands of vibration modes due to atomic defects, the percentage of surface Ce 3+ content, and the average coordination number of oxygen anions surrounding each cerium cation in the ceria samples.

Original languageEnglish (US)
Pages (from-to)4552-4561
Number of pages10
Issue number10
StatePublished - Mar 14 2019

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Structure-activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals'. Together they form a unique fingerprint.

Cite this