Abstract
Genetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKβ) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S177, S181) in IKKβ is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13–197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy. The SAR led to the identification of a novel quinoxaline urea analog 84 that reduced the levels of p-IKKβ in dose- and time-dependent studies. When compared to 13–197, analog 84 was ∼2.5-fold more potent in TNFα-induced NFκB inhibition and ∼4-fold more potent in inhibiting pancreatic cancer cell growth. Analog 84 exhibited ∼4.3-fold greater exposure (AUC0-∞) resulting in ∼5.7-fold increase in oral bioavailability (%F) when compared to 13–197. Importantly, oral administration of 84 by itself and in combination of gemcitabine reduced p-IKKβ levels and inhibited pancreatic tumor growth in a xenograft model.
Original language | English (US) |
---|---|
Article number | 113579 |
Journal | European Journal of Medicinal Chemistry |
Volume | 222 |
DOIs | |
State | Published - Oct 15 2021 |
Keywords
- IKKβ
- NFκB
- Pancreatic cancer
- Quinoxaline urea
ASJC Scopus subject areas
- Pharmacology
- Drug Discovery
- Organic Chemistry