TY - GEN
T1 - Study of secondary pool boiling effects with functionalized surfaces created via Femtosecond Laser Surface Processing
AU - Kruse, C.
AU - Tsubaki, A.
AU - Zuhlke, C.
AU - Anderson, T.
AU - Alexander, D.
AU - Gogos, G.
AU - Ndao, S.
N1 - Funding Information:
This work has been supported by a grant through the Nebraska Center for Energy Sciences Research (NCESR) Grant # 803, A-00-A-03, a NASA EPSCoR Grant # 2014-198-SC1, a NASA Space Technology Research Fellowship (NSTRF) Grant # NNX14AM50H, and an Office of Naval Research (ONR) Grant # FA4600-12-D-9000-0045.
Publisher Copyright:
© 2016 IEEE.
PY - 2016/7/20
Y1 - 2016/7/20
N2 - A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on experimental trends and numerical simulations, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments on femtosecond laser processed Inconel and stainless steel multiscale surfaces consistently displayed secondary boiling effects. Through experimental and numerical studies, it was determined that secondary boiling effects are a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top resulting in a decreased surface superheat with increasing heat flux. This decrease in wall superheat at higher heat fluxes is reflected by a hook back of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
AB - A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on experimental trends and numerical simulations, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments on femtosecond laser processed Inconel and stainless steel multiscale surfaces consistently displayed secondary boiling effects. Through experimental and numerical studies, it was determined that secondary boiling effects are a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top resulting in a decreased surface superheat with increasing heat flux. This decrease in wall superheat at higher heat fluxes is reflected by a hook back of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
KW - Boiling Curve Hook
KW - Enhanced Heat Transfer Coefficient
KW - Functionalized Metallic Surfaces
KW - Multiscale Surfaces
KW - Secondary Boiling Effects
UR - http://www.scopus.com/inward/record.url?scp=84983250201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983250201&partnerID=8YFLogxK
U2 - 10.1109/ITHERM.2016.7517570
DO - 10.1109/ITHERM.2016.7517570
M3 - Conference contribution
AN - SCOPUS:84983250201
T3 - Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016
SP - 352
EP - 358
BT - Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016
Y2 - 31 May 2016 through 3 June 2016
ER -