Subperiosteal delivery of transforming growth factor beta 1 and human growth hormone from mineralized PCL films

Matthew B. Parlato, Jae Sung Lee, David G. Belair, Gianluca Fontana, Ellen Leiferman, Rewais Hanna, Connie Chamberlain, Erik A. Ranheim, William L. Murphy, Matthew A. Halanski

Research output: Contribution to journalArticlepeer-review

Abstract

The ability to locally deliver bioactive molecules to distinct regions of the skeleton may provide a novel means by which to improve fracture healing, treat neoplasms or infections, or modulate growth. In this study, we constructed single-sided mineral-coated poly-ε-caprolactone membranes capable of binding and releasing transforming growth factor beta 1 (TGF-β1) and human growth hormone (hGH). After demonstrating biological activity in vitro and characterization of their release, these thin bioabsorbable membranes were surgically implanted using an immature rabbit model. Membranes were circumferentially wrapped under the periosteum, thus placed in direct contact with the proximal metaphysis to assess its bioactivity in vivo. The direct effects on the metaphyseal bone, bone marrow, and overlying periosteum were assessed using radiography and histology. Effects of membrane placement at the tibial growth plate were assessed via physeal heights, tibial growth rates (pulsed fluorochrome labeling), and tibial lengths. Subperiosteal placement of the mineralized membranes induced greater local chondrogenesis in the plain mineral and TGF-β1 samples than the hGH. More exuberant and circumferential ossification was seen in the TGF-β1 treated tibiae. The TGF-β1 membranes also induced hypocellularity of the bone marrow with characteristics of gelatinous degeneration not seen in the other groups. While the proximal tibial growth plates were taller in the hGH treated than TGF-β1, no differences in growth rates or overall tibial lengths were found. In conclusion, these data demonstrate the feasibility of using bioabsorbable mineral coated membranes to deliver biologically active compounds subperiosteally in a sustained fashion to affect cells at the insertion site, bone marrow, and even growth plate.

Original languageEnglish (US)
Pages (from-to)1578-1593
Number of pages16
JournalJournal of Biomedical Materials Research - Part A
Volume112
Issue number9
DOIs
StateAccepted/In press - 2024

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Subperiosteal delivery of transforming growth factor beta 1 and human growth hormone from mineralized PCL films'. Together they form a unique fingerprint.

Cite this