TY - JOUR
T1 - Subtype-associated differences in HIV-1 reverse transcription affect the viral replication
AU - Iordanskiy, Sergey
AU - Waltke, Mackenzie
AU - Feng, Yanjun
AU - Wood, Charles
N1 - Funding Information:
The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: Nevirapine, Sup-T1 cells from James Hoxie, MAGI cells from Michael Emerman, TZM-bl cell line from John Kappes and Xiaoyun Wu, anti-HIV-1 p24 mouse monoclonal antibody from Michael Malim, anti-HIV-1 IN monoclonal antibody from Dag E. Helland, and human HIV immunoglobulin from Luiz Barbosa. The HIV-1 proviral clone NL and U87.CD4.CCR5 cells were a gift from Dr. Lee Ratner; pcDNA-Env(MLV) was kindly provided by Dr. Nathaniel Landau; the 8E5 cells were granted by Dr. Michael Bukrinsky. The HIV-1 subtype C primary isolates 1084i, 1984i and 2669i were from the University of Nebraska collection of samples from Zambian patients. Authors are also grateful to Sandra Gonzalez-Ramirez for optimized single genome sequencing protocol and technical support in sequence analysis. We thank Danielle Shea for excellent technical assistance. This work was partially supported by the PHS award CA75903, NCRR P20 COBRE grant RR015635 and P20RR15635-10S1 to C.W. M.W. was supported by NIH NIAID Kirschstein National Research Service Award 1T32AIO60547.
PY - 2010/10/12
Y1 - 2010/10/12
N2 - Background: The impact of the products of the pol gene, specifically, reverse transcriptase (RT) on HIV-1 replication, evolution, and acquisition of drug resistance has been thoroughly characterized for subtype B. For subtype C, which accounts of almost 60% of HIV cases worldwide, much less is known. It has been reported that subtype C HIV-1 isolates have a lower replication capacity than B; however, the basis of these differences remains unclear.Results: We analyzed the impact of the pol gene products from HIV-1 B and C subtypes on the maturation of HIV virions, accumulation of reverse transcription products, integration of viral DNA, frequency of point mutations in provirus and overall viral replication. Recombinant HIV-1 viruses of B and C subtypes comprising the pol fragments encoding protease, integrase and either the whole RT or a chimeric RT from different isolates of the C and B subtypes, were used for infection of cells expressing CXCR4 or CCR5 co-receptors. The viruses carrying different fragments of pol from the isolates of B and C subtypes did not reveal differences in Gag and GagPol processing and viral RNA incorporation into the virions. However, the presence of the whole RT from subtype C, or the chimeric RT containing either the polymerase or the connection and RNase H domains from C isolates, caused significantly slower viral replication regardless of B or C viral backbone. Subtype C RT carrying viruses displayed lower levels of accumulation of strong-stop cDNA in permeabilized virions during endogenous reverse transcription, and decreased accumulation of both strong-stop and positive strand reverse transcription products in infected cells and in isolated reverse transcription complexes. This decreased accumulation correlated with lower levels of viral DNA integration in cells infected with viruses carrying the whole RT or RT domains from subtype C isolates. The single viral genome assay analysis did not reveal significant differences in the frequency of point mutations between the RT from B or C subtypes.Conclusions: These data suggest that the whole RT as well as distinct polymerase and connection-RNase H domains from subtype C HIV-1 confer a lower level of accumulation of reverse transcripts in the virions and reverse transcription complexes as compared to subtype B, resulting in a lower overall level of virus replication.
AB - Background: The impact of the products of the pol gene, specifically, reverse transcriptase (RT) on HIV-1 replication, evolution, and acquisition of drug resistance has been thoroughly characterized for subtype B. For subtype C, which accounts of almost 60% of HIV cases worldwide, much less is known. It has been reported that subtype C HIV-1 isolates have a lower replication capacity than B; however, the basis of these differences remains unclear.Results: We analyzed the impact of the pol gene products from HIV-1 B and C subtypes on the maturation of HIV virions, accumulation of reverse transcription products, integration of viral DNA, frequency of point mutations in provirus and overall viral replication. Recombinant HIV-1 viruses of B and C subtypes comprising the pol fragments encoding protease, integrase and either the whole RT or a chimeric RT from different isolates of the C and B subtypes, were used for infection of cells expressing CXCR4 or CCR5 co-receptors. The viruses carrying different fragments of pol from the isolates of B and C subtypes did not reveal differences in Gag and GagPol processing and viral RNA incorporation into the virions. However, the presence of the whole RT from subtype C, or the chimeric RT containing either the polymerase or the connection and RNase H domains from C isolates, caused significantly slower viral replication regardless of B or C viral backbone. Subtype C RT carrying viruses displayed lower levels of accumulation of strong-stop cDNA in permeabilized virions during endogenous reverse transcription, and decreased accumulation of both strong-stop and positive strand reverse transcription products in infected cells and in isolated reverse transcription complexes. This decreased accumulation correlated with lower levels of viral DNA integration in cells infected with viruses carrying the whole RT or RT domains from subtype C isolates. The single viral genome assay analysis did not reveal significant differences in the frequency of point mutations between the RT from B or C subtypes.Conclusions: These data suggest that the whole RT as well as distinct polymerase and connection-RNase H domains from subtype C HIV-1 confer a lower level of accumulation of reverse transcripts in the virions and reverse transcription complexes as compared to subtype B, resulting in a lower overall level of virus replication.
UR - http://www.scopus.com/inward/record.url?scp=77957744675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957744675&partnerID=8YFLogxK
U2 - 10.1186/1742-4690-7-85
DO - 10.1186/1742-4690-7-85
M3 - Article
C2 - 20939905
AN - SCOPUS:77957744675
SN - 1742-4690
VL - 7
JO - Retrovirology
JF - Retrovirology
M1 - 85
ER -