13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase

Javier Seravalli, Stephen W. Ragsdale

Research output: Contribution to journalArticle

30 Scopus citations

Abstract

Carbon monoxide dehydrogenase (CODH) catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur cluster (the C-cluster). CO oxidation follows a ping-pong mechanism involving two-electron reduction of the C-cluster followed by electron transfer through an internal electron transfer chain to external electron acceptors. We describe 13C NMR studies demonstrating a CODH-catalyzed steady-state exchange reaction between CO and CO2 in the absence of external electron acceptors. This reaction is characterized by a CODH-dependent broadening of the 13CO NMR resonance; however, the chemical shift of the 13CO resonance is unchanged, indicating that the broadening is in the slow exchange limit of the NMR experiment. The 13CO line broadening occurs with a rate constant (1080 s-1 at 20°C) that is approximately equal to that of CO oxidation. It is concluded that the observed exchange reaction is between 13CO and CODH-bound 13CO2 because 13CO line broadening is pH-independent (unlike steady-state CO oxidation), because it requires a functional C-cluster (but not a functional B-cluster) and because the 13CO2 line width does not broaden. Furthermore, a steady-state isotopic exchange reaction between 12CO and 13CO2 in solution was shown to occur at the same rate as that of CO2 reduction, which is approximately 750-fold slower than the rate of 13CO exchange broadening. The interaction between CODH and the inhibitor cyanide (CN-) was also probed by 13C NMR. A functional C-cluster is not required for 13CN- broadening (unlike for 13CO), and its exchange rate constant is 30-fold faster than that for 13CO. The combined results indicate that the 13CO exchange includes migration of CO to the C-cluster, and CO oxidation to CO2, but not release of CO2 or protons into the solvent. They also provide strong evidence of a CO2 binding site and of an internal proton transfer network in CODH. 13CN- exchange appears to monitor only movement of CN- between solution and its binding to and release from CODH.

Original languageEnglish (US)
Pages (from-to)6770-6781
Number of pages12
JournalBiochemistry
Volume47
Issue number26
DOIs
StatePublished - Jul 1 2008

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of '<sup>13</sup>C NMR characterization of an exchange reaction between CO and CO<sub>2</sub> catalyzed by carbon monoxide dehydrogenase'. Together they form a unique fingerprint.

  • Cite this