Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces

Jie Zhong, Manoj Kumar, Chong Q. Zhu, Joseph S. Francisco, Xiao C. Zeng

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn- and anti-CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn- and anti-CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre-reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn- and anti-CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.

Original languageEnglish (US)
Pages (from-to)7740-7744
Number of pages5
JournalAngewandte Chemie - International Edition
Issue number27
StatePublished - Jun 26 2017


  • Criegee intermediate
  • ab initio dynamics simulation
  • air–water interface
  • atmospheric chemistry

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry


Dive into the research topics of 'Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces'. Together they form a unique fingerprint.

Cite this