Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles

Veronica Montesinos-Cruz, Jordan Rose, Aglaia Pappa, Mihalis I. Panayiotidis, Andrea De Vizcaya-Ruiz, Rodrigo Franco

Research output: Contribution to journalArticlepeer-review

Abstract

Metal-derived nanoparticles (Mt-NPs) are increasingly used in cosmetology due to their ultraviolet shielding (titanium dioxide [TiO2]), antioxidant (cerium dioxide [CeO2]), and biocidal (silver [Ag]) properties. In the absence of overt toxicity (i.e., cell death), Mt-NPs are considered safe for cosmetic applications. However, there is little understanding about the mechanisms involved in the survival of keratinocytes exposed to subtoxic levels of Mt-NPs. Human keratinocytes (HaCaT) were exposed subacutely to subtoxic concentrations (≤30 μg/mL, 48-72 h) of rutile (r) TiO2 (cylindrical), CeO2 (cubic) and Ag (spherical) with a core/hydrodynamic size of <50/<100 nm and >98% purity. Mt-NP uptake was indirectly quantified by changes in the light side scatter, where the kinetics (time/dose-response) suggested that the three types of Mt-NPs were similarly uptaken by keratinocytes. rTiO2 and CeO2, but not Ag-NPs, increased autophagy, whose inhibition prompted cell death. No increase in the steady-state levels of reactive oxygen species (ROS) was induced by exposure to any of the Mt-NPs tested. Interestingly, intracellular Ag-NP aggregates observed an increased far-red autofluorescence (≥740 nm em), which has been ascribed to their binding to thiol molecules such as glutathione (GSH). Accordingly, inhibition of GSH synthesis, but not the impairment of oxidized GSH recycling, sensitized keratinocytes to Ag-NPs suggesting that GSH homeostasis, and its direct scavenging of Ag-NPs, but not ROS, is essential for keratinocyte survival upon exposure to Ag-NP. rTiO2 and Ag, but not CeO2-NPs, compromised metabolic flux (glycolysis and respiration), but ATP levels were unaltered. Finally, we also observed that exposure to Mt-NPs sensitized keratinocytes to non-UV xenobiotic exposure (arsenite and paraquat). Our results demonstrate the differential contribution of autophagy and GSH homeostasis to the survival of human keratinocytes exposed to subtoxic concentrations of Mt-NPs and highlight the increased susceptibility of keratinocytes exposed to Mt-NPs to a second xenobiotic insult.

Original languageEnglish (US)
Pages (from-to)536-552
Number of pages17
JournalChemical Research in Toxicology
Volume33
Issue number2
DOIs
StatePublished - Feb 17 2020

ASJC Scopus subject areas

  • Toxicology

Fingerprint Dive into the research topics of 'Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles'. Together they form a unique fingerprint.

Cite this