Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1′-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators

Christopher D. McCune, Matthew L. Beio, Jill M. Sturdivant, Roberto De La Salud-Bea, Brendan M. Darnell, David B. Berkowitz

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1′-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1′-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1′-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1′-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1′-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1′-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1′-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1′-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.

Original languageEnglish (US)
Pages (from-to)14077-14089
Number of pages13
JournalJournal of the American Chemical Society
Volume139
Issue number40
DOIs
StatePublished - Oct 11 2017

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1′-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators'. Together they form a unique fingerprint.

Cite this