Abstract
Objective: Perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles bind the antisense to the c-myc protooncogene (anti-c-myc) which prevents neointimal hyperplasia following vascular endothelial injury. The microbubbles also adhere to sites of damaged vascular endothelium and thus may be a method of systemically targeting delivery of anti-c-myc. Methods: Laser scanning microscopy was performed on the aorta of 10 mice (five which were complement depleted) that received intravenous FITC-PESDA following aortic endothelial injury. C-myc expression was quantified following selective intracoronary injury in nine pigs that received intravenous (IV) anti-c-myc bound to PESDA. Finally, neointimal formation was measured following intracoronary stent deployment in 30 pigs that received either IV anti-c-myc alone or the same dose bound to PESDA. Results: Fluorescent microscopy confirmed selective PESDA microbubble adherence to aortic endothelium in all mice with aortic injury. This binding was nearly abolished when serum complement was depleted prior to injury. C-myc expression at the site of coronary endothelial injury was significantly lower in pigs treated with systemic anti-c-myc bound to PESDA. There was a 33% reduction in % stenosis and a 28% reduction in intimal area at 45 days post-stent deployment in pigs that received IV antisense plus PESDA. The stent margins also had reduced neointimal formation. Conclusion: Systemic administration of anti-c-myc bound to PESDA microbubbles may be a good method for preventing coronary neointimal formation within and around implanted stents.
Original language | English (US) |
---|---|
Pages (from-to) | 25-33 |
Number of pages | 9 |
Journal | Cardiovascular Revascularization Medicine |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2006 |
Keywords
- Drug delivery
- Intimal hyperplasia
- Microbubbles
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine