TY - JOUR
T1 - TATA-binding protein recognition and bending of a consensus promoter are protein species dependent
AU - Whittington, JoDell E.
AU - Delgadillo, Roberto F.
AU - Attebury, Torrissa J.
AU - Parkhurst, Laura K.
AU - Daugherty, Margaret A.
AU - Parkhurst, Lawrence J.
PY - 2008/7/8
Y1 - 2008/7/8
N2 - The structure and behavior of full-length human TBP binding the adenovirus major late promoter (AdMLP) have been characterized using biophysical methods. The human protein induces a 97° bend in DNAAdMLP. The high-resolution functional data provide a quantitative energetic and kinetic description of the partial reaction sequence as native human TBP binds rapidly to a consensus promoter with high affinity. The reaction proceeds with successive formation of three bound species, all having strongly bent DNA, with the concurrence of binding and bending demonstrated by both fluorescence and anisotropy stopped flow. These results establish the protein species dependence of the TBP-DNAAdMLP structure and recognition mechanism. Additionally, the strong correlation between the DNA bend angle and transcription efficiency demonstrated previously for yeast TBP is shown to extend to human TBP. The heterologous NH2-terminal domains are the apparent source of the species-specific differences. Together with previous studies the present work establishes that TBPwt-DNATATA function and structure depend both on the TATA box sequence and on the TBP species.
AB - The structure and behavior of full-length human TBP binding the adenovirus major late promoter (AdMLP) have been characterized using biophysical methods. The human protein induces a 97° bend in DNAAdMLP. The high-resolution functional data provide a quantitative energetic and kinetic description of the partial reaction sequence as native human TBP binds rapidly to a consensus promoter with high affinity. The reaction proceeds with successive formation of three bound species, all having strongly bent DNA, with the concurrence of binding and bending demonstrated by both fluorescence and anisotropy stopped flow. These results establish the protein species dependence of the TBP-DNAAdMLP structure and recognition mechanism. Additionally, the strong correlation between the DNA bend angle and transcription efficiency demonstrated previously for yeast TBP is shown to extend to human TBP. The heterologous NH2-terminal domains are the apparent source of the species-specific differences. Together with previous studies the present work establishes that TBPwt-DNATATA function and structure depend both on the TATA box sequence and on the TBP species.
UR - http://www.scopus.com/inward/record.url?scp=46849083475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46849083475&partnerID=8YFLogxK
U2 - 10.1021/bi800139w
DO - 10.1021/bi800139w
M3 - Article
C2 - 18553934
AN - SCOPUS:46849083475
SN - 0006-2960
VL - 47
SP - 7264
EP - 7273
JO - Biochemistry
JF - Biochemistry
IS - 27
ER -