Temporal changes in nutrient transport following land application of manure

John E. Gilley, Eghball Bahman, David B. Marx

Research output: Contribution to conferencePaperpeer-review

Abstract

Little information is currently available concerning temporal changes in nutrient transport following the addition of manure to cropland areas. This study was conducted to measure nutrient transport in runoff as affected by tillage and time following the application of beef cattle or swine manure to a site on which corn [Zea mays (L.)] was grown. Rainfall simulation tests were initiated 4, 32, 62,123, and 354 days following land application. Three 30-min simulated rainfall events, separated by 24-hour intervals, were conducted at an intensity of approximately 70 mm hr-1. Dissolved phosphorus (DP), particulate phosphorus (PP), total phosphorus (TP), N03-N, NH4-N, total nitrogen (TN), electrical conductivity (EC), and pH were measured from 0.75-m wide by 2-m long plots. Concentrations of DP, TP, and NH4-N, in general, declined throughout the year on both the no-till cattle and no-till swine manure treatments. Tillage did not significantly affect concentrations of DP, PP, TP, NH4-N or pH on the swine manure treatments, but significant variations in these variables were measured over time. Under no-till and tilled conditions on both the cattle and swine manure treatments, the smallest concentrations of DP, N03-N, NH4-N, and TN occurred on the final test date. The increase in pH of runoff during the study is attributed to the addition of CaCO3 to the rations of beef cattle and swine. Tillage appeared to have less of an impact on runoff nutrient transport from cropland areas than length of time since manure application.

Original languageEnglish (US)
StatePublished - 2007
Externally publishedYes
Event2007 ASABE Annual International Meeting, Technical Papers - Minneapolis, MN, United States
Duration: Jun 17 2007Jun 20 2007

Conference

Conference2007 ASABE Annual International Meeting, Technical Papers
Country/TerritoryUnited States
CityMinneapolis, MN
Period6/17/076/20/07

Keywords

  • Eutrophication
  • Land application
  • Manure management
  • Manure runoff
  • Nitrogen movement
  • Nutrient losses
  • Phosphorus
  • Runoff
  • Tillage
  • Water quality

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences
  • General Engineering

Fingerprint

Dive into the research topics of 'Temporal changes in nutrient transport following land application of manure'. Together they form a unique fingerprint.

Cite this