The comparative toxicity of nitric oxide and peroxynitrite to escherichia coli

Luca Brunelli, John P. Crow, Joseph S. Beckman

Research output: Contribution to journalArticlepeer-review

252 Scopus citations


The reactivity and toxicity of nitric oxide is modest in comparison to oxidants derived from nitric oxide. Exposure of Escherichia coli to 1 mM nitric oxide under aerobic or anaerobic conditions did not decrease viability of the bacteria. Peroxynitrite (1 mM), the reaction product of superoxide and nitric oxide, was completely bactericidal after 5 s, The nitrovasodilator, 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1), slowly decomposes to release both nitric oxide and superoxide and thereby produces peroxynitrite. SIN-1 killed E. coli in direct proportion to its concentration with an LD50 of 0.5 mM. Copper, zinc superoxide dismutase (50-400 units/ml) provided substantial but not complete protection against SIN-1 killing. Catalase (500-10, 000 units/ml) partially protected in direct proportion to its concentration, while inactivated catalase was not protective. Superoxide dismutase and catalase together completely protected E. coli against SIN-1 toxicity. Oxy-hemoglobin eliminated both SIN-1 and peroxynitrite toxicity. The bactericidal activity of SIN-1 was further enhanced by pterin plus xanthine oxidase. Pterin plus xanthine oxidase alone or together with Fe3+ ethylenediamine tetraacetate produced no significant decrease in E. coli viability. Hydrogen peroxide was not directly toxic to the bacteria, but E. coli pretreated with hydrogen peroxide were more susceptible to peroxynitrite, SIN-1, and the aerobic oxidation products of nitric oxide. Hydrogen peroxide pretreatment did not increase significantly the toxicity of nitric oxide under anaerobic conditions. Our results suggest that peroxynitrite is far more toxic to E. coli than nitric oxide or its byproducts from aerobic oxidation.

Original languageEnglish (US)
Pages (from-to)327-334
Number of pages8
JournalArchives of Biochemistry and Biophysics
Issue number1
StatePublished - Jan 1995


  • Bacteria
  • Catalase
  • Dismutase
  • Escherichia coli
  • Nitric oxide
  • Nitrogen dioxide
  • Peroxynttrite
  • SIN-1
  • Superoxide

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology


Dive into the research topics of 'The comparative toxicity of nitric oxide and peroxynitrite to escherichia coli'. Together they form a unique fingerprint.

Cite this