TY - JOUR
T1 - The effect of histidine on the structure and antitumor activity of metal-5-halouracil complexes
AU - Singh, Udai P.
AU - Ghose, Ranjana
AU - Ghose, Animesh K.
AU - Sodhi, Ajit
AU - Singh, Sukh Mahendra
AU - Singh, Rakesh K.
N1 - Funding Information:
Authors would like to thank CDRI, Lucknow for recording the electronics pectra of the complexes This work was supported by grantsf rom CUR, New Delhi.
PY - 1989
Y1 - 1989
N2 - The ternary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions with 5-halouracils, viz., 5-fluorouracil (SFU), 5-chlorouracil (5ClU), and 5-bromouracil (5BrU) and the biologically important ligand L-histidine (HISD) have been synthesized and characterized by elemental analysis, conductance measurements, infrared spectra, electronic spectra, and magnetic moment (room temperature) measurements. On the basis of these studies, the structures of the complexes have been proposed. All these ternary complexes were screened for their antitumor activity against Dalton's lymphoma in C3H/He mice. It was found that only Mn(II)-5BrU-HISD, Co(II)-5BrU-HISD, Cu(II)-SCIU-HISD Cu(II)-5BrU-HISD, Zn(II)-5FU-HISD, and Zn(II)-5BrU-HISD complexes have significant antitumor activity with T/C > 125 % (where T and C represent mean lifespan of treated mice and control mice respectively). The Mn(II)-5FU-HISD, Co(II)-5FU-HISD, Co(II)-5CIU-HISD, Ni(II)-5CIU-HISD, Ni(II)-5BrU-HISD, and Zn(II)-5CIU-HISD complexes are also effective antitumor agents, with T/C > 115 %. The complexes that showed effective antitumor action in vivo were also found to inhibit 3H-thymidine incorporation (DNA replication) in Dalton's lymphoma cells in vitro.
AB - The ternary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions with 5-halouracils, viz., 5-fluorouracil (SFU), 5-chlorouracil (5ClU), and 5-bromouracil (5BrU) and the biologically important ligand L-histidine (HISD) have been synthesized and characterized by elemental analysis, conductance measurements, infrared spectra, electronic spectra, and magnetic moment (room temperature) measurements. On the basis of these studies, the structures of the complexes have been proposed. All these ternary complexes were screened for their antitumor activity against Dalton's lymphoma in C3H/He mice. It was found that only Mn(II)-5BrU-HISD, Co(II)-5BrU-HISD, Cu(II)-SCIU-HISD Cu(II)-5BrU-HISD, Zn(II)-5FU-HISD, and Zn(II)-5BrU-HISD complexes have significant antitumor activity with T/C > 125 % (where T and C represent mean lifespan of treated mice and control mice respectively). The Mn(II)-5FU-HISD, Co(II)-5FU-HISD, Co(II)-5CIU-HISD, Ni(II)-5CIU-HISD, Ni(II)-5BrU-HISD, and Zn(II)-5CIU-HISD complexes are also effective antitumor agents, with T/C > 115 %. The complexes that showed effective antitumor action in vivo were also found to inhibit 3H-thymidine incorporation (DNA replication) in Dalton's lymphoma cells in vitro.
UR - http://www.scopus.com/inward/record.url?scp=0024851611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024851611&partnerID=8YFLogxK
U2 - 10.1016/0162-0134(89)85006-8
DO - 10.1016/0162-0134(89)85006-8
M3 - Article
C2 - 2628549
AN - SCOPUS:0024851611
SN - 0162-0134
VL - 37
SP - 325
EP - 339
JO - Journal of Inorganic Biochemistry
JF - Journal of Inorganic Biochemistry
IS - 4
ER -