The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens

Salwa F. Masud, Stefan Raufer, Stephen T. Neely, Hideko H. Nakajima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Superior canal dehiscence (SCD) is a hole in the bony wall of the superior semicircular canal, which can cause various auditory and/or vestibular symptoms and can result in wrong and/or delayed diagnosis. Wideband acoustic immittance (WAI) can potentially distinguish various mechanical middle-ear pathologies as well as inner-ear pathologies non-invasively. We found that in patients, SCD was commonly associated with a narrow-band decrease in power reflectance (PR, derived from WAI) near 1?kHz. Because clinical data has large variation across individual ears and because we do not know the individual "normal" state prior to SCD, we measured WAI in five fresh temporal bone specimens to determine the effects of SCD with respect to the normal state. In temporal bone, we measured PR to assess mechanical changes before and after SCD, as well as to assess the effect of an open or closed middle-ear cavity. After SCD, PR had a consistent decrease between 0.48 and 0.76kHz, and a slight increase between 1.04 and 1.4 Hz in the open cavity condition. However, in several experiments, we observed low PR around 1 kHz in the normal state before SCD, likely due to the specimen's open middle ear cavity (MEC). Because we see effects of both SCD and open MEC around 1kHz, some of the SCD effect can be masked by the effect of the MEC in the temporal bone specimens. To compensate for this MEC effect, we estimated the effect of SCD in a closed MEC case, but the effect did not differ significantly from the measured open MEC. This study demonstrates the limitation of temporal bone experiments with open MEC when studying inner-ear lesions with WAI.

Original languageEnglish (US)
Title of host publicationTo the Ear and Back Again - Advances in Auditory Biophysics
Subtitle of host publicationProceedings of the 13th Mechanics of Hearing Workshop
EditorsChristopher Bergevin, Sunil Puria
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416703
DOIs
StatePublished - May 31 2018
Event13th Mechanics of Hearing Workshop: To the Ear and Back Again - Advances in Auditory Biophysics, MoH 2017 - St. Catharines, Canada
Duration: Jun 19 2017Jun 24 2017

Publication series

NameAIP Conference Proceedings
Volume1965
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other13th Mechanics of Hearing Workshop: To the Ear and Back Again - Advances in Auditory Biophysics, MoH 2017
CountryCanada
CitySt. Catharines
Period6/19/176/24/17

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens'. Together they form a unique fingerprint.

  • Cite this

    Masud, S. F., Raufer, S., Neely, S. T., & Nakajima, H. H. (2018). The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens. In C. Bergevin, & S. Puria (Eds.), To the Ear and Back Again - Advances in Auditory Biophysics: Proceedings of the 13th Mechanics of Hearing Workshop [050003] (AIP Conference Proceedings; Vol. 1965). American Institute of Physics Inc.. https://doi.org/10.1063/1.5038469