Abstract
This study investigated the independent effect of added mass on the stability of the leg kinematics during human walking. We reasoned that adding mass would influence the body's inertial state and thus challenge the ability of the leg to redirect and accelerate the total mass of the body while walking. We hypothesized that walking with added mass would reduce the stability of the leg kinematics. Lower extremity sagittal plane joint kinematics were recorded for 23 subjects as they walked on a treadmill at their preferred speed with and without added mass. The total mass of each subject was manipulated with combinations of simulated reduced gravity and added load. The stability of the leg kinematics was evaluated by computing the eigenvalues of the Poincare map (i.e. Floquet analysis) that defined the position and velocity of the right hip, knee and ankle at heel-contact and mid-swing. Significant differences in stability were found between the various added mass conditions (P=0.040) and instant in the gait cycle (P=0.001). Post-hoc analysis revealed that walking with 30% added mass compromised the stability of the leg kinematics compared with walking without additional mass (P=0.031). In addition, greater instability was detected at the instance of heel-contact compared with mid-swing (P=0.001). Our results reveal that walking with added mass gives rise to greater disturbances in the leg kinematics, and may be related to the redirection and acceleration of the body throughout the gait cycle. Walking with added mass reduces the stability of the leg kinematics and possibly the overall balance of the walking pattern.
Original language | English (US) |
---|---|
Pages (from-to) | 1965-1970 |
Number of pages | 6 |
Journal | Journal of Experimental Biology |
Volume | 212 |
Issue number | 12 |
DOIs | |
State | Published - Jun 15 2009 |
Keywords
- Floquet multipliers
- Gait
- Inertia
- Nonlinear
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Physiology
- Aquatic Science
- Animal Science and Zoology
- Molecular Biology
- Insect Science