TY - GEN
T1 - The influence of primary blast wave on the posterior part of the eyeball
AU - Tong, Junfei
AU - Gu, Linxia
PY - 2018
Y1 - 2018
N2 - With the increasing application of improvised explosive devices, the ratio of traumatic ocular injury significantly increased in the past decades, which has become the fourth most happened injury to military deployment. The ocular injury treatment is costly and has been less effective, which influences the military service and life experience of the soldiers. With years of research on the traumatic ocular injury through experiment or computational simulations, the primary blast wave related overpressure was found to induce macular damage, globe rupture. While the influence of the primary blast wave on the posterior part of the eyeball was poorly understood, such as the optic nerve. In this work, we developed a three-dimensional computation model, which included lamina cribrosa (LC), optic nerve and cerebrospinal fluid (CSF). The strain evaluated in optic nerve was found to exceed neural tissue's physiological loading range, which might explain the vision loss after the blast.
AB - With the increasing application of improvised explosive devices, the ratio of traumatic ocular injury significantly increased in the past decades, which has become the fourth most happened injury to military deployment. The ocular injury treatment is costly and has been less effective, which influences the military service and life experience of the soldiers. With years of research on the traumatic ocular injury through experiment or computational simulations, the primary blast wave related overpressure was found to induce macular damage, globe rupture. While the influence of the primary blast wave on the posterior part of the eyeball was poorly understood, such as the optic nerve. In this work, we developed a three-dimensional computation model, which included lamina cribrosa (LC), optic nerve and cerebrospinal fluid (CSF). The strain evaluated in optic nerve was found to exceed neural tissue's physiological loading range, which might explain the vision loss after the blast.
UR - http://www.scopus.com/inward/record.url?scp=85060398578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060398578&partnerID=8YFLogxK
U2 - 10.1115/IMECE201888113
DO - 10.1115/IMECE201888113
M3 - Conference contribution
AN - SCOPUS:85060398578
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Biomedical and Biotechnology Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Y2 - 9 November 2018 through 15 November 2018
ER -