Abstract
Background. Graft failure related to acute and chronic rejection remains an important problem in transplantation. An association has been reported between microchimerism and the development of tolerance. Since it has been established that cells of fetal origin can be found in maternal tissues long after parturition, and cells of maternal origin may persist for years in offspring, we hypothesized that this fetal-maternal microchimerism may confer tolerance and thus less graft loss for kidneys transplanted between mothers and their offspring. Methods. We used data from the Scientific Registry of Transplant Recipients to compare death-censored graft survival among recipients of living-related renal transplants sharing at least one human leukocyte antigen (HLA) haplotype with their donor. A total of 23,064 such transplants were reported from 1995 to 2004. A Cox proportional hazards model was constructed to compare death-censored graft survival among the following donor-recipient pairings: child-to-mother, child-to-father, mother-to-child, father-to-child, 1-haplotype matched siblings, and HLA-identical siblings. Results. HLA-identical sibling recipients had the best survival, but results for the child-to-father group were not significantly worse (hazard ratio=1.07, P=0.47). Mother-to-child transplants had the poorest graft survival (hazard ratio=2.61, P<0.0001). We found no evidence of tolerance to kidneys transplanted between mothers and offspring. Conclusions. Our analysis of 1-haplotype matched living-related renal transplants argues against tolerance to organs based on fetal-maternal microchimerism. Mechanistic studies examining the relationship between chimerism and immune sensitization would be useful to explore our results, and may contribute to a better understanding of tolerance.
Original language | English (US) |
---|---|
Pages (from-to) | 1483-1488 |
Number of pages | 6 |
Journal | Transplantation |
Volume | 85 |
Issue number | 10 |
DOIs | |
State | Published - May 27 2008 |
Keywords
- Graft survival
- Kidney transplantation
- Living-related donation
- Microchimerism
- Tolerance
ASJC Scopus subject areas
- Transplantation