The role of histone H4 biotinylation in the structure of nucleosomes

Nina A. Filenko, Carol Kolar, John T. West, S. Abbie Smith, Yousef I. Hassan, Gloria E.O. Borgstahl, Janos Zempleni, Yuri L. Lyubchenko

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Background: Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings: To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p≤0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance: The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.

Original languageEnglish (US)
Article numbere16299
JournalPloS one
Volume6
Issue number1
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'The role of histone H4 biotinylation in the structure of nucleosomes'. Together they form a unique fingerprint.

Cite this