Abstract

Orthostatic tremor (OT) is a rare movement disorder characterized by a fast tremor (13–18 Hz) in the lower extremities during stance. Patients with OT typically complain of instability while standing/walking. However, due to the geographical limitation, the standing instability or gait problems in patients with OT cannot be assessed and monitored frequently. The increasing popularity of using smartphone-based accelerometers could be a solution to eliminate this limitation. This study examined the feasibility of using smartphone-based accelerometers to identify the changes in body movement in different standing and locomotor tasks. Twenty patients with OT and seven healthy controls were consented to participate in this study. Subjects stood with eyes open or eyes closed for 20 seconds. They also performed four different locomotor tasks (normal walking, tandem walk, walking on an elevated surface, and obstacle negotiation). When performed different locomotor tasks, patients with OT had a larger acceleration of body movement than controls in the medial-lateral direction (tandem walk: p = 0.026, walking on an elevated surface: p = 0.002, and stepping over the obstacle: p = 0.028). Patients with OT had smaller acceleration of body movement than controls while standing with eyes open in the vertical direction (p = 0.012), in the anterior-posterior direction (p = 0.013) and in the medial-lateral direction (p = 0.011). This study provides objective evidence of balance instability in patients with OT not only while standing but also during different challenging locomotor tasks by using smartphone-based accelerometers.

Original languageEnglish (US)
Article numbere0220012
JournalPloS one
Volume14
Issue number7
DOIs
StatePublished - Jan 1 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor'. Together they form a unique fingerprint.

  • Cite this