Abstract
The effects of adding calcium hydroxide (Ca(OH)2) to a copper-CF (30 %) composite (Cu-CF(30 %)) were studied. After sintering at 700 °C, precipitates of calcium oxide (CaO) were included in the copper matrix. When less than 10 % of Ca(OH)2 was added, the thermal conductivity was similar to or higher than the reference composite Cu-CF(30 %). A thermal conductivity of 322 W m-1 K-1 was measured for the Cu-Ca(OH)2(3 %)-CF(30 %) composite. The effects of heat treatment (400, 600, and 1000 °C during 24 h) on the composite Cu-Ca(OH)2(3 %)-CF(30 %) were studied. At the lower annealing temperature, CaO inside the matrix migrated to the interface of the copper matrix and the CF. At 1000 °C, the formation of the interphase calcium carbide (CaC2) at the interface of the copper and CFs was highlighted by TEM observations. Carbide formation at the interface led to a decrease in both thermal conductivity (around 270 W m-1 K-1) and the coefficient of thermal expansion (CTE (10.1 × 10-6 K-1)).
Original language | English (US) |
---|---|
Pages (from-to) | 5537-5545 |
Number of pages | 9 |
Journal | Journal of Materials Science |
Volume | 49 |
Issue number | 16 |
DOIs | |
State | Published - Aug 2014 |
ASJC Scopus subject areas
- Ceramics and Composites
- Materials Science (miscellaneous)
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Polymers and Plastics