Thin films formed by selenization of CuInxB1-x precursors in Se vapor

C. A. Kamler, R. J. Soukup, N. J. Ianno, J. L. Huguenin-Love, J. Olejníček, S. A. Darveau, C. L. Exstrom

Research output: Contribution to journalArticle

2 Scopus citations


Previous attempts in producing light absorbing materials with bandgaps near the 1.37 eV efficiency optimum have included the partial substitution of gallium or aluminum for indium in the CIS system. The most efficient of these solar cells to date have had absorber layers with bandgaps<1.2 eV. It is logical that an even smaller substitutional atom, boron, should lead to a wider bandgap with a smaller degree of atomic substitution. In this study, copper-indium-boron precursor films are sputtered onto molybdenum coated glass substrates and post-selenized. In the selenized films, although X-ray diffraction (XRD) measurements confirm that a CIS phase is present, Auger electron spectroscopy (AES) results indicate that boron is no longer homogeneously dispersed throughout the film as it was in the case of the unselenized precursor.

Original languageEnglish (US)
Pages (from-to)45-50
Number of pages6
JournalSolar Energy Materials and Solar Cells
Issue number1
StatePublished - Jan 2009


  • CIBS
  • Chalcopyrites
  • Post-selenization
  • Sputtering

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Thin films formed by selenization of CuIn<sub>x</sub>B<sub>1-x</sub> precursors in Se vapor'. Together they form a unique fingerprint.

  • Cite this