TY - JOUR
T1 - Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles
AU - Porter, Thomas R.
AU - LeVeen, Robert F.
AU - Fox, Randy
AU - Kricsfeld, Alan
AU - Xie, Feng
PY - 1996
Y1 - 1996
N2 - Whereas low-intensity, high-frequency ultrasound (US) alone appears to cause minimal thrombolysis, US combined with air-filled microbubbles does increase the amount of urokinase (UK)-mediated clot lysis (CL). Because this phenomenon may be mediated by cavitation-induced streaming, we hypothesized that perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles, which are more stable than air-filled microbubbles, may also enhance US- induced thrombolysis. We measured the percentage CL of equally sized thrombi (1.0 ± 0.1 mg) made from freshly drawn blood incubated for 2 hours and then exposed to 20 kHz US (0.846 MPa peak negative pressure). The thrombi were bathed in 4 ml of saline solution, UK alone (20,000 U), PESDA alone, or a combination of PESDA with UK. The percentage CL achieved with PESDA and therapeutic US was also compared with the percentage CL achieved with room air-filled sonicated dextrose albumin (RASDA) microbubbles. When compared with US alone (24% ± 13% CL) or UK alone (17% ± 3% CL), PESDA plus US produced significantly better CL (43% ± 17%; p < 0.05). PESDA combined with US also produced significantly greater CL than RASDA combined with US (28% ± 9%; p < 0.05). The optimal CL was achieved with a combination of PESDA with UK with US (60% ± 14% CL). We conclude that PESDA microbubbles alone may be capable of inducing thrombolysis when insonified with a low-frequency transducer.
AB - Whereas low-intensity, high-frequency ultrasound (US) alone appears to cause minimal thrombolysis, US combined with air-filled microbubbles does increase the amount of urokinase (UK)-mediated clot lysis (CL). Because this phenomenon may be mediated by cavitation-induced streaming, we hypothesized that perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles, which are more stable than air-filled microbubbles, may also enhance US- induced thrombolysis. We measured the percentage CL of equally sized thrombi (1.0 ± 0.1 mg) made from freshly drawn blood incubated for 2 hours and then exposed to 20 kHz US (0.846 MPa peak negative pressure). The thrombi were bathed in 4 ml of saline solution, UK alone (20,000 U), PESDA alone, or a combination of PESDA with UK. The percentage CL achieved with PESDA and therapeutic US was also compared with the percentage CL achieved with room air-filled sonicated dextrose albumin (RASDA) microbubbles. When compared with US alone (24% ± 13% CL) or UK alone (17% ± 3% CL), PESDA plus US produced significantly better CL (43% ± 17%; p < 0.05). PESDA combined with US also produced significantly greater CL than RASDA combined with US (28% ± 9%; p < 0.05). The optimal CL was achieved with a combination of PESDA with UK with US (60% ± 14% CL). We conclude that PESDA microbubbles alone may be capable of inducing thrombolysis when insonified with a low-frequency transducer.
UR - http://www.scopus.com/inward/record.url?scp=0029807006&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029807006&partnerID=8YFLogxK
U2 - 10.1016/S0002-8703(96)90006-X
DO - 10.1016/S0002-8703(96)90006-X
M3 - Article
C2 - 8892768
AN - SCOPUS:0029807006
SN - 0002-8703
VL - 132
SP - 964
EP - 968
JO - American Heart Journal
JF - American Heart Journal
IS - 5
ER -