Time-dependent regional myocardial strains in patients with heart failure with a preserved ejection fraction

Shane P. Smith, Timothy W. Secomb, Brian D. Hong, Michael J. Moulton

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Objectives. To better understand the etiology of HFpEF in a controlled human population, regional time-varying strains were computed using echocardiography speckle tracking in patients with heart failure with a preserved ejection fraction and normal subjects. Methods. Eleven normal volunteers and ten patients with echo-graded diastolic dysfunction and symptoms of heart failure were imaged with echocardiography and longitudinal, circumferential, and rotational strains were determined using speckle-tracking. Diastolic strain rate was also determined. Patient demographics and echo-derived flows, volumes, and pressures were recorded. Results. Peak longitudinal and circumferential strain was globally reduced in patients (p < 0.001), when compared to controls. The patients attained peak longitudinal and circumferential strain at a consistently later point in systole than controls. Rotational strains were not different in most LV regions. Early diastolic strain rate was significantly reduced in the patients (p < 0.001). LV mass and wall thickness were significantly increased in the patients; however ejection fraction was preserved and stroke volume was diminished (p < 0.001). Conclusions. This study shows that patients with HFpEF have reduced early diastolic strain rate and reduced peak strain that is regionally homogeneous and that they also utilize a longer fraction of systole to achieve peak axial strains.

Original languageEnglish (US)
Article number8957307
JournalBioMed research international
Volume2016
DOIs
StatePublished - 2016

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Time-dependent regional myocardial strains in patients with heart failure with a preserved ejection fraction'. Together they form a unique fingerprint.

Cite this