Toddlers' recognition of noise-vocoded speech

Rochelle Newman, Monita Chatterjee

Research output: Contribution to journalArticle

15 Scopus citations


Despite their remarkable clinical success, cochlear-implant listeners today still receive spectrally degraded information. Much research has examined normally hearing adult listeners' ability to interpret spectrally degraded signals, primarily using noise-vocoded speech to simulate cochlear implant processing. Far less research has explored infants' and toddlers' ability to interpret spectrally degraded signals, despite the fact that children in this age range are frequently implanted. This study examines 27-month-old typically developing toddlers' recognition of noise-vocoded speech in a language-guided looking study. Children saw two images on each trial and heard a voice instructing them to look at one item ("Find the cat!"). Full-spectrum sentences or their noise-vocoded versions were presented with varying numbers of spectral channels. Toddlers showed equivalent proportions of looking to the target object with full-speech and 24- or 8-channel noise-vocoded speech; they failed to look appropriately with 2-channel noise-vocoded speech and showed variable performance with 4-channel noise-vocoded speech. Despite accurate looking performance for speech with at least eight channels, children were slower to respond appropriately as the number of channels decreased. These results indicate that 2-yr-olds have developed the ability to interpret vocoded speech, even without practice, but that doing so requires additional processing. These findings have important implications for pediatric cochlear implantation.

Original languageEnglish (US)
Pages (from-to)483-494
Number of pages12
JournalJournal of the Acoustical Society of America
Issue number1
StatePublished - Jan 2013

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint Dive into the research topics of 'Toddlers' recognition of noise-vocoded speech'. Together they form a unique fingerprint.

  • Cite this