TY - GEN
T1 - Transforming Agriculture with Intelligent Data Management and Insights
AU - Pan, Yu
AU - Sun, Jianxin
AU - Yu, Hongfeng
AU - Bai, Geng
AU - Ge, Yufeng
AU - Luck, Joe
AU - Awada, Tala
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Modern agriculture faces grand challenges to meet increased demands for food, fuel, feed, and fiber with population growth under the constraints of climate change and dwindling natural resources. Data innovation is urgently required to secure and improve the productivity, sustainability, and resilience of our agroecosystems. As various sensors and Internet of Things (IoT) instrumentation become more available, affordable, reliable, and stable, it has become possible to conduct data collection, integration, and analysis at multiple temporal and spatial scales, in real-time, and with high resolutions. At the same time, the sheer amount of data poses a great challenge to data storage and analysis, and the de facto data management and analysis practices adopted by scientists have become increasingly inefficient. Additionally, the data generated from different disciplines, such as genomics, phenomics, environment, agronomy, and socioeconomic, can be highly heterogeneous. That is, datasets across disciplines often do not share the same ontology, modality, or format. All of the above make it necessary to design a new data management infrastructure that implements the principles of Findable, Accessible, Interoperable, and Reusable (FAIR). In this paper, we propose Agriculture Data Management and Analytics (ADMA), which satisfies the FAIR principles. Our new data management infrastructure is intelligent by supporting semantic data management across disciplines, interactive by providing various data management/analysis portals such as web GUI, command line, and API, scalable by utilizing the power of high-performance computing (HPC), extensible by allowing users to load their own data analysis tools, trackable by keeping track of different operations on each file, and open by using a rich set of mature open source technologies.
AB - Modern agriculture faces grand challenges to meet increased demands for food, fuel, feed, and fiber with population growth under the constraints of climate change and dwindling natural resources. Data innovation is urgently required to secure and improve the productivity, sustainability, and resilience of our agroecosystems. As various sensors and Internet of Things (IoT) instrumentation become more available, affordable, reliable, and stable, it has become possible to conduct data collection, integration, and analysis at multiple temporal and spatial scales, in real-time, and with high resolutions. At the same time, the sheer amount of data poses a great challenge to data storage and analysis, and the de facto data management and analysis practices adopted by scientists have become increasingly inefficient. Additionally, the data generated from different disciplines, such as genomics, phenomics, environment, agronomy, and socioeconomic, can be highly heterogeneous. That is, datasets across disciplines often do not share the same ontology, modality, or format. All of the above make it necessary to design a new data management infrastructure that implements the principles of Findable, Accessible, Interoperable, and Reusable (FAIR). In this paper, we propose Agriculture Data Management and Analytics (ADMA), which satisfies the FAIR principles. Our new data management infrastructure is intelligent by supporting semantic data management across disciplines, interactive by providing various data management/analysis portals such as web GUI, command line, and API, scalable by utilizing the power of high-performance computing (HPC), extensible by allowing users to load their own data analysis tools, trackable by keeping track of different operations on each file, and open by using a rich set of mature open source technologies.
KW - Agriculture data management
KW - FAIR principles
KW - Heterogeneous data
UR - http://www.scopus.com/inward/record.url?scp=85184986387&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184986387&partnerID=8YFLogxK
U2 - 10.1109/BigData59044.2023.10386589
DO - 10.1109/BigData59044.2023.10386589
M3 - Conference contribution
AN - SCOPUS:85184986387
T3 - Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023
SP - 3489
EP - 3498
BT - Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023
A2 - He, Jingrui
A2 - Palpanas, Themis
A2 - Hu, Xiaohua
A2 - Cuzzocrea, Alfredo
A2 - Dou, Dejing
A2 - Slezak, Dominik
A2 - Wang, Wei
A2 - Gruca, Aleksandra
A2 - Lin, Jerry Chun-Wei
A2 - Agrawal, Rakesh
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Big Data, BigData 2023
Y2 - 15 December 2023 through 18 December 2023
ER -