TY - JOUR
T1 - TRPV1 channels in human skeletal muscle feed arteries
T2 - implications for vascular function
AU - Ives, Stephen J.
AU - Park, Song Young
AU - Kwon, Oh Sung
AU - Gifford, Jayson R.
AU - Andtbacka, Robert H.I.
AU - Hyngstrom, John R.
AU - Richardson, Russell S.
N1 - Publisher Copyright:
© 2017 The Authors. Experimental Physiology © 2017 The Physiological Society
PY - 2017/9/1
Y1 - 2017/9/1
N2 - New Findings: What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α1-receptor-mediated responses. Thus, the vasodilatory role of TRPV1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the ‘sympatholytic’ effect of TRPV1 activation and known endogenous activators (anandamide, reactive oxygen species, H+, etc.), TRPV1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV1) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41–89 years) were studied using wire myography with capsaicin (TRPV1 agonist) and without (control). Specifically, phenylephrine (α1-adrenergic receptor agonist), dexmedetomidine (α2-adrenergic receptor agonist), ACh and sodium nitroprusside concentration–response curves were established to assess the role of TRPV1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length–tensionmax (LTmax) and capsaicin, 21 ± 5%LTmax] and dexmedetomidine (control, 29 ± 12%LTmax and capsaicin, 2 ± 3%LTmax), while robustly enhancing maximal vasorelaxation with ACh (control, 78 ± 8% vasorelaxation and capsaicin, 108 ± 13% vasorelaxation) and less clearly enhancing the sodium nitroprusside response. Denudation of the endothelium greatly attenuated the maximal ACh-induced vasorelaxation equally in the control and capsaicin conditions (∼17% vasorelaxation) and abolished the attenuating effect of capsaicin on the maximal phenylephrine response (denuded + capsaicin, 61 ± 20%LTmax). Immunohistochemistry identified a relatively high density of TRPV1 channels in the endothelium compared with the smooth muscle of the SMFAs, but because of the far greater volume of smooth muscle, total TRPV1 protein content was not significantly attenuated by denudation. Thus, SMFAs ubiquitously express functional TRPV1 channels, which alter vascular function, in terms of α1-receptors, in a predominantly endothelium-dependent manner, conceivably contributing to the functional sympatholysis and unveiling a therapeutic target.
AB - New Findings: What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α1-receptor-mediated responses. Thus, the vasodilatory role of TRPV1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the ‘sympatholytic’ effect of TRPV1 activation and known endogenous activators (anandamide, reactive oxygen species, H+, etc.), TRPV1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV1) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41–89 years) were studied using wire myography with capsaicin (TRPV1 agonist) and without (control). Specifically, phenylephrine (α1-adrenergic receptor agonist), dexmedetomidine (α2-adrenergic receptor agonist), ACh and sodium nitroprusside concentration–response curves were established to assess the role of TRPV1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length–tensionmax (LTmax) and capsaicin, 21 ± 5%LTmax] and dexmedetomidine (control, 29 ± 12%LTmax and capsaicin, 2 ± 3%LTmax), while robustly enhancing maximal vasorelaxation with ACh (control, 78 ± 8% vasorelaxation and capsaicin, 108 ± 13% vasorelaxation) and less clearly enhancing the sodium nitroprusside response. Denudation of the endothelium greatly attenuated the maximal ACh-induced vasorelaxation equally in the control and capsaicin conditions (∼17% vasorelaxation) and abolished the attenuating effect of capsaicin on the maximal phenylephrine response (denuded + capsaicin, 61 ± 20%LTmax). Immunohistochemistry identified a relatively high density of TRPV1 channels in the endothelium compared with the smooth muscle of the SMFAs, but because of the far greater volume of smooth muscle, total TRPV1 protein content was not significantly attenuated by denudation. Thus, SMFAs ubiquitously express functional TRPV1 channels, which alter vascular function, in terms of α1-receptors, in a predominantly endothelium-dependent manner, conceivably contributing to the functional sympatholysis and unveiling a therapeutic target.
KW - blood flow
KW - heat
KW - sympatholysis
UR - http://www.scopus.com/inward/record.url?scp=85028561696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028561696&partnerID=8YFLogxK
U2 - 10.1113/EP086223
DO - 10.1113/EP086223
M3 - Article
C2 - 28681979
AN - SCOPUS:85028561696
SN - 0958-0670
VL - 102
SP - 1245
EP - 1258
JO - Experimental Physiology
JF - Experimental Physiology
IS - 9
ER -