Turbulent velocity profiles in sediment-laden flows

Junke Guo, Pierre Y. Julien

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

A theoretical analysis shows that velocity profiles in sediment-laden flows are similar to those in clear water. The modified log-wake law, which is developed for clear water by Guo, is also valid in sediment-laden flows. The analysis of the effects of sediment suspension on turbulent kinetic energy and turbulent diffusion shows that: (1) sediment suspension increases mean flow energy loss; (2) sediment suspension weakens turbulent diffusion in the vertical direction and then increases velocity gradient; and (3) sediment suspension affects velocity profile in two ways: average concentration and density gradient. The comparison with narrow-channel laboratory data confirms the theoretical analysis and shows that: (1) the modified log-wake law agrees well with experimental data for sediment-laden flows; (2) both average concentration and density gradient reduce the von Karman constant; and (3) for a given width-depth ratio, sediment concentration slightly increases the wake strength while density gradient has little effect on it. In addition, the modified log-wake law can reproduce experimental data where the maximum velocity occurs below the water surface.

Original languageEnglish (US)
Pages (from-to)11-23
Number of pages13
JournalJournal of Hydraulic Research
Volume39
Issue number1
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Turbulent velocity profiles in sediment-laden flows'. Together they form a unique fingerprint.

Cite this