TY - JOUR
T1 - Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions
AU - Katimbo, Abia
AU - Rudnick, Daran R.
AU - Liang, Wei zhen
AU - DeJonge, Kendall C.
AU - Lo, Tsz Him
AU - Franz, Trenton E.
AU - Ge, Yufeng
AU - Qiao, Xin
AU - Kabenge, Isa
AU - Nakabuye, Hope Njuki
AU - Duan, Jiaming
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/12/1
Y1 - 2022/12/1
N2 - Mobile infrared thermometers (IRTs) mounted on moving platforms provide one-time-of-day radiometric measurements (Tr), which can be used to calculate instantaneous actual evapotranspiration (ETa) using the two-source energy balance (TSEB) model. However, irrigation scheduling decisions utilize daily ETa estimates, hence the need for time scaling. This study evaluated different upscaling methods to calculate daily maize ETa using one-time-of day Tr under varying water stress conditions. Mobile IRTs were mounted on a high clearance mobile sensing platform and collected Tr in remote locations under full, deficit and rainfed conditions. Seven scaling methods via two pathways were employed to obtain daily ETa. First pathway was scaling one-time-of-day Tr (SC) whereas the second pathway involved use of six upscaling methods of instantaneous ETa including: original and modified evaporative factor ((EF)o, (EF)m) as well as crop coefficient ((Kc)o, (Kc)m), direct canopy resistance (Direct- rc), and solar radiation ratio (Rn/Rs); and all were compared to a neutron-based soil water balance (SWB) determined ETa. From the results, SC outperformed other methods in comparison to SWB ETa across all the selected treatments with smaller discrepancies and lower RMSE (0.9–1.7 mm d−1 vs. 0.7–4.3 mm d−1 for other methods). Furthermore, methods including SC, (EF)o, (EF)m, and Rn/Rs had their daily average ETa values in close agreement to SWB ETa with mean ETa differences ranging between 0.2 and 1.6 mm d−1. Overall, SC method performed better in fully irrigated maize (r2 = 0.52, RMSE = 0.9 mm d−1) than in deficit irrigated maize ( r2 = 0.48, RMSE = 1.4 mm d−1) but worst in rainfed maize (r2 = 0.16, RMSE = 1.7 mm d−1). This implies that SC is more suited for irrigated rather than rainfed settings. Importantly, the choice of any method depends on data requirements, irrigation water management strategy, and ETa estimation accuracy.
AB - Mobile infrared thermometers (IRTs) mounted on moving platforms provide one-time-of-day radiometric measurements (Tr), which can be used to calculate instantaneous actual evapotranspiration (ETa) using the two-source energy balance (TSEB) model. However, irrigation scheduling decisions utilize daily ETa estimates, hence the need for time scaling. This study evaluated different upscaling methods to calculate daily maize ETa using one-time-of day Tr under varying water stress conditions. Mobile IRTs were mounted on a high clearance mobile sensing platform and collected Tr in remote locations under full, deficit and rainfed conditions. Seven scaling methods via two pathways were employed to obtain daily ETa. First pathway was scaling one-time-of-day Tr (SC) whereas the second pathway involved use of six upscaling methods of instantaneous ETa including: original and modified evaporative factor ((EF)o, (EF)m) as well as crop coefficient ((Kc)o, (Kc)m), direct canopy resistance (Direct- rc), and solar radiation ratio (Rn/Rs); and all were compared to a neutron-based soil water balance (SWB) determined ETa. From the results, SC outperformed other methods in comparison to SWB ETa across all the selected treatments with smaller discrepancies and lower RMSE (0.9–1.7 mm d−1 vs. 0.7–4.3 mm d−1 for other methods). Furthermore, methods including SC, (EF)o, (EF)m, and Rn/Rs had their daily average ETa values in close agreement to SWB ETa with mean ETa differences ranging between 0.2 and 1.6 mm d−1. Overall, SC method performed better in fully irrigated maize (r2 = 0.52, RMSE = 0.9 mm d−1) than in deficit irrigated maize ( r2 = 0.48, RMSE = 1.4 mm d−1) but worst in rainfed maize (r2 = 0.16, RMSE = 1.7 mm d−1). This implies that SC is more suited for irrigated rather than rainfed settings. Importantly, the choice of any method depends on data requirements, irrigation water management strategy, and ETa estimation accuracy.
KW - Irrigation scheduling
KW - Mobile infrared thermometers
KW - Moving platforms
KW - Radiometric temperature
KW - Soil water balance
KW - Time scaling methods
UR - http://www.scopus.com/inward/record.url?scp=85140334846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140334846&partnerID=8YFLogxK
U2 - 10.1016/j.agwat.2022.107972
DO - 10.1016/j.agwat.2022.107972
M3 - Article
AN - SCOPUS:85140334846
SN - 0378-3774
VL - 274
JO - Agricultural Water Management
JF - Agricultural Water Management
M1 - 107972
ER -