TY - JOUR
T1 - Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells
AU - Meng, Tzu Ching
AU - Lin, Ming Fong
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1998/8/21
Y1 - 1998/8/21
N2 - Human prostatic acid phosphatase (PAcP) is a prostate epithelium- specific differentiation antigen. In prostate carcinomas, the cellular PAcP is decreased. We investigated its functional role in these cells. Several lines of evidence support the hypothesis that cellular PAcP functions as a neutral protein-tyrosine phosphatase and is involved in regulating prostate cell growth. In this study, we identify its in vivo substrate. Our results demonstrated that, in different human prostate cancer cell lines, the phosphotyrosine (Tyr(P)) level of a 185-kDa phosphoprotein (pp185) inversely correlates with the cellular activity of PAcP. On SDS-PAGE, this pp185 comigrates with the c-ErbB-2 oncoprotein. Immunodepletion experiments revealed that c-ErbB-2 protein is the major pp185 in cells. Results from subclones of LNCaP cells indicated the lower the cellular PAcP activity, the higher the Tyr(P) levels of c-ErbB-2. This inverse correlation was further observed in PAcP cDNA-transfected cells. In clone 33 LNCaP cells, L-(+)- tartrate suppresses the cellular PAcP activity and causes an elevated Tyr(P) level of c-ErbB-2 protein. Epidermal growth factor stimulates the proliferation of LNCaP cells, which concurs with a decreased cellular PAcP activity as well as an increased Tyr(P) level of c-ErbB-2. Biochemically, PAcP dephosphorylates c-ErbB-2 at pH 7.0. The results thus suggest that cellular PAcP down-regulates prostate cell growth by dephosphorylating Tyr(P) on c-ErbB-2 oncoprotein in those cells.
AB - Human prostatic acid phosphatase (PAcP) is a prostate epithelium- specific differentiation antigen. In prostate carcinomas, the cellular PAcP is decreased. We investigated its functional role in these cells. Several lines of evidence support the hypothesis that cellular PAcP functions as a neutral protein-tyrosine phosphatase and is involved in regulating prostate cell growth. In this study, we identify its in vivo substrate. Our results demonstrated that, in different human prostate cancer cell lines, the phosphotyrosine (Tyr(P)) level of a 185-kDa phosphoprotein (pp185) inversely correlates with the cellular activity of PAcP. On SDS-PAGE, this pp185 comigrates with the c-ErbB-2 oncoprotein. Immunodepletion experiments revealed that c-ErbB-2 protein is the major pp185 in cells. Results from subclones of LNCaP cells indicated the lower the cellular PAcP activity, the higher the Tyr(P) levels of c-ErbB-2. This inverse correlation was further observed in PAcP cDNA-transfected cells. In clone 33 LNCaP cells, L-(+)- tartrate suppresses the cellular PAcP activity and causes an elevated Tyr(P) level of c-ErbB-2 protein. Epidermal growth factor stimulates the proliferation of LNCaP cells, which concurs with a decreased cellular PAcP activity as well as an increased Tyr(P) level of c-ErbB-2. Biochemically, PAcP dephosphorylates c-ErbB-2 at pH 7.0. The results thus suggest that cellular PAcP down-regulates prostate cell growth by dephosphorylating Tyr(P) on c-ErbB-2 oncoprotein in those cells.
UR - http://www.scopus.com/inward/record.url?scp=0032555565&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032555565&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.34.22096
DO - 10.1074/jbc.273.34.22096
M3 - Article
C2 - 9705354
AN - SCOPUS:0032555565
VL - 273
SP - 22096
EP - 22104
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 34
ER -