TY - GEN
T1 - Understanding stability of noisy networks through centrality measures and local connections
AU - Ufimtsev, Vladimir
AU - Sarkar, Soumya
AU - Mukherjee, Animesh
AU - Bhowmick, Sanjukta
N1 - Publisher Copyright:
© 2016 Copyright held by the owner/author(s).
PY - 2016/10/24
Y1 - 2016/10/24
N2 - Networks created from real-world data contain some inaccuracies or noise, manifested as small changes in the network structure. An important question is whether these small changes can significantly affect the analysis results. In this paper, we study the effect of noise in changing ranks of the high centrality vertices. We compare, using the Jaccard Index (JI), how many of the top-k high centrality nodes from the original network are also part of the top-k ranked nodes from the noisy network. We deem a network as stable if the JI value is high. We observe two features that affect the stability. First, the stability is dependent on the number of top-ranked vertices considered. When the vertices are ordered according to their centrality values, they group into clusters. Perturbations to the network can change the relative ranking within the cluster, but vertices rarely move from one cluster to another. Second, the stability is dependent on the local connections of the high ranking vertices. The network is highly stable if the high ranking vertices are connected to each other. Our findings show that the stability of a network is affected by the local properties of high centrality vertices, rather than the global properties of the entire network. Based on these local properties we can identify the stability of a network, without explicitly applying a noise model.
AB - Networks created from real-world data contain some inaccuracies or noise, manifested as small changes in the network structure. An important question is whether these small changes can significantly affect the analysis results. In this paper, we study the effect of noise in changing ranks of the high centrality vertices. We compare, using the Jaccard Index (JI), how many of the top-k high centrality nodes from the original network are also part of the top-k ranked nodes from the noisy network. We deem a network as stable if the JI value is high. We observe two features that affect the stability. First, the stability is dependent on the number of top-ranked vertices considered. When the vertices are ordered according to their centrality values, they group into clusters. Perturbations to the network can change the relative ranking within the cluster, but vertices rarely move from one cluster to another. Second, the stability is dependent on the local connections of the high ranking vertices. The network is highly stable if the high ranking vertices are connected to each other. Our findings show that the stability of a network is affected by the local properties of high centrality vertices, rather than the global properties of the entire network. Based on these local properties we can identify the stability of a network, without explicitly applying a noise model.
KW - Betweenness
KW - Closeness
KW - Noise
KW - Rich-club
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=84996569934&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84996569934&partnerID=8YFLogxK
U2 - 10.1145/2983323.2983692
DO - 10.1145/2983323.2983692
M3 - Conference contribution
AN - SCOPUS:84996569934
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 2347
EP - 2352
BT - CIKM 2016 - Proceedings of the 2016 ACM Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 25th ACM International Conference on Information and Knowledge Management, CIKM 2016
Y2 - 24 October 2016 through 28 October 2016
ER -