Understanding the soil water dynamics during excess and deficit rainfall conditions over the core monsoon zone of India

Mangesh M. Goswami, Milind Mujumdar, Bhupendra Bahadur Singh, Madhusudan Ingale, Naresh Ganeshi, Manish Ranalkar, Trenton E. Franz, Prashant Srivastav, Dev Niyogi, R. Krishnan, S. N. Patil

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Observations of soil moisture (SM) during excess and deficit monsoon seasons between 2000 to 2021 present a unique opportunity to understand the soil water dynamics (SWD) over core monsoon zone (CMZ) of India. This study aims to analyse SWD by investigating the SM variability, SM memory (SMM), and the coupling between surface and subsurface SM levels. Particularly intriguing are instances of concurrent monsoonal extremes, which give rise to complex SWD patterns. Usually, it is noted that a depleted convective activity and persistence of higher temperatures during the pre-monsoon season leads to lower SM, while monsoon rains and post-monsoon showers support the prevalence of higher SM conditions. The long persistent dry spells during deficit monsoon years enhances the Bowen ratio (BR) due to the high sensible heat fluxes. On the other hand, the availability of large latent heat flux during excess monsoon and post-monsoon seasons tend to decrease the BR. This enhancement or reduction in BR is due to evapotranspiration (ET), which influences the SWD by modulating the surface—subsurface SM coupling. The surface and subsurface SM coupling analysis for CMZ exhibits significant distinction in the evolution of wet and dry extremes. SM variations and persistence time scale is used as an indicator of SMM, and analysed for both surface and subsurface SM observation levels. Evidently, subsurface SM exhibits remarkably prolonged memory timescales, approximately twice that of surface SM. Furthermore, we dissect SWD linked to wet and dry extremes by analysing annual soil water balance at a local site in Pune, India. Our findings reveal that ET and deep drainage on annual scale are modulated largely by number of break events during the monsoon season. In essence, our study underscores the significance of surface-subsurface SM observations in unravelling the intricate tapestry of SWD.

Original languageEnglish (US)
Article number114011
JournalEnvironmental Research Letters
Volume18
Issue number11
DOIs
StatePublished - Nov 1 2023

Keywords

  • core monsoon zone
  • evapotranspiration
  • infiltration
  • soil moisture
  • soil moisture memory
  • soil water dynamics

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Environmental Science
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Understanding the soil water dynamics during excess and deficit rainfall conditions over the core monsoon zone of India'. Together they form a unique fingerprint.

Cite this