Abstract
Tuberoinfundibular dopamine (TIDA) neurons are spared in Parkinson's disease (PD), a disorder that causes degeneration of midbrain nigrostriatal dopamine (NSDA) and mesolimbic dopamine (MLDA) neurons. This pattern of susceptibility has been demonstrated in acute complex I inhibitor-induced models of PD, and extrinsic factors such as toxin distribution, bioactivation, entry into the cell and sequestration into vesicles are postulated to underlie the resistance of TIDA neurons. In the present experiments, direct exposure to rotenone or 1-methyl-4-phenylpyridinium (MPP+) had no effect on mediobasal hypothalamic TIDA neurons, but significantly increased the percentage of apoptag immunoreactive neurons in midbrain primary NSDA and MLDA cultures. In vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure caused an initial decrease (by 4 h) in dopamine (DA) in brain regions containing axon terminals of TIDA (median eminence [ME]), NSDA (striatum [ST]) and MLDA (nucleus accumbens [NA]) neurons. By 16 h after MPTP treatment, DA concentrations in ME returned to control levels, while ST and NA DA levels remained low up to 32 h after treatment with MPTP. When mice and rats were chronically treated with MPTP and rotenone, respectively, the same pattern of susceptibility emerged. TIDA neurons were unaffected while NSDA neurons suffered loss of cell bodies and axon terminal DA. These experiments demonstrate that the resistance of hypothalamic TIDA neurons is not likely to be due to extrinsic factors, and that further examination of the intrinsic properties of these neurons may elucidate mechanisms that can be translated into neuroprotective strategies in PD.
Original language | English (US) |
---|---|
Pages (from-to) | 592-598 |
Number of pages | 7 |
Journal | Neuroscience |
Volume | 147 |
Issue number | 3 |
DOIs | |
State | Published - Jul 13 2007 |
Externally published | Yes |
Keywords
- MPTP
- hypothalamus
- neurodegeneration
- rotenone
- susceptibility
- tyrosine hydroxylase
ASJC Scopus subject areas
- General Neuroscience