TY - JOUR
T1 - United States midwest soil and weather conditions influence anaerobic potentially mineralizable nitrogen
AU - Clark, Jason D.
AU - Veum, Kristen S.
AU - Fernández, Fabián G.
AU - Camberato, James J.
AU - Carter, Paul R.
AU - Ferguson, Richard B.
AU - Franzen, David W.
AU - Kaiser, Daniel E.
AU - Kitchen, Newell R.
AU - Laboski, Carrie A.M.
AU - Nafziger, Emerson D.
AU - Rosen, Carl J.
AU - Sawyer, John E.
AU - Shanahan, John F.
N1 - Funding Information:
We thank DuPont Pioneer for funding this research. The authors thank the supporting scientists [Matt Yost; Dan Barker (IA); Lakesh Sharma, Amitava Chatterjee, and Norm Cattanach (ND); Todd Andraski (WI); and Tim Hart (DuPont Pioneer)], field technicians [Matt Volkmann (MO); Jason Niekamp and Joshua Vonk (IL); Glen Slater (NE); Andrew Scobbie, Thor Sellie, Nicholas Severson, Darby Martin, and Erik Joerres (MN)], and cooperating farmers and research farm personnel for their help in completing this project. Mention of trade names or commercial products in this publication is solely for the purpose of providing information and does not imply recommendation or endorsement by the affiliated Universities or the USDA.
Publisher Copyright:
© Soil Science Society of America.
PY - 2019
Y1 - 2019
N2 - Nitrogen provided to crops through mineralization is an important factor in N management guidelines. Understanding of the interactive effects of soil and weather conditions on N mineralization needs to be improved. Relationships between anaerobic potentially mineralizable N (PMNan) and soil and weather conditions were evaluated under the contrasting climates of eight US Midwestern states. Soil was sampled (0-30 cm) for PMNan analysis before pre-plant N application (PP0N) and at the V5 development stage from the pre-plant 0 (V50N) and 180 kg N ha-1 (V5180N) rates and incubated for 7, 14, and 28 d. Even distribution of precipitation and warmer temperatures before soil sampling and greater soil organic matter (SOM) increased PMNan. Soil properties, including total C, SOM, and total N, had the strongest relationships with PMNan (R2 ≤ 0.40), followed by temperature (R2 ≤ 0.20) and precipitation (R2 ≤ 0.18) variables. The strength of the relationships between soil properties and PMNan from PP0N, V50N, and V5180N varied by ≤10%. Including soil and weather in the model greatly increased PMNan predictability (R2 ≤ 0.69), demonstrating the interactive effect of soil and weather on N mineralization at different times during the growing season regardless of N fertilization. Delayed soil sampling (V50N) and sampling after fertilization (V5180N) reduced PMNan predictability. However, longer PMNan incubations improved PMNan predictability from both V5 soil samplings closer to the PMNan predictability from PP0N, indicating the potential of PMNan from longer incubations to provide improved estimates of N mineralization when N fertilizer is applied.
AB - Nitrogen provided to crops through mineralization is an important factor in N management guidelines. Understanding of the interactive effects of soil and weather conditions on N mineralization needs to be improved. Relationships between anaerobic potentially mineralizable N (PMNan) and soil and weather conditions were evaluated under the contrasting climates of eight US Midwestern states. Soil was sampled (0-30 cm) for PMNan analysis before pre-plant N application (PP0N) and at the V5 development stage from the pre-plant 0 (V50N) and 180 kg N ha-1 (V5180N) rates and incubated for 7, 14, and 28 d. Even distribution of precipitation and warmer temperatures before soil sampling and greater soil organic matter (SOM) increased PMNan. Soil properties, including total C, SOM, and total N, had the strongest relationships with PMNan (R2 ≤ 0.40), followed by temperature (R2 ≤ 0.20) and precipitation (R2 ≤ 0.18) variables. The strength of the relationships between soil properties and PMNan from PP0N, V50N, and V5180N varied by ≤10%. Including soil and weather in the model greatly increased PMNan predictability (R2 ≤ 0.69), demonstrating the interactive effect of soil and weather on N mineralization at different times during the growing season regardless of N fertilization. Delayed soil sampling (V50N) and sampling after fertilization (V5180N) reduced PMNan predictability. However, longer PMNan incubations improved PMNan predictability from both V5 soil samplings closer to the PMNan predictability from PP0N, indicating the potential of PMNan from longer incubations to provide improved estimates of N mineralization when N fertilizer is applied.
UR - http://www.scopus.com/inward/record.url?scp=85072173379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072173379&partnerID=8YFLogxK
U2 - 10.2136/sssaj2019.02.0047
DO - 10.2136/sssaj2019.02.0047
M3 - Article
AN - SCOPUS:85072173379
SN - 0361-5995
VL - 83
SP - 1137
EP - 1147
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 4
ER -