Abstract
We show how atomic-scale exchange phenomena can be controlled and exploited in nanoscale itinerant magnets to substantially improve magnetic properties. Cluster-deposition experiments, first-principle simulations, and analytical calculations are used to demonstrate the effect in Co2Si nanoclusters, which have average sizes varying from about 0.6 to 29.5 nm. The cluster-deposited nanoparticles exhibit average magnetic moments of up to 0.70 μB/Co at 10 K and 0.49 μB/Co at 300 K with appreciable magnetocrystalline anisotropies, in sharp contrast to the nearly vanishing bulk magnetization. The underlying spin correlations and associated cluster-size dependence of the magnetization are explained by a surface induced ferromagnetic spin polarization with a decay length of the order of 1 nm, much larger than the nearest-neighbor interatomic distance in the alloy.
Original language | English (US) |
---|---|
Article number | 242401 |
Journal | Applied Physics Letters |
Volume | 106 |
Issue number | 24 |
DOIs | |
State | Published - Jun 15 2015 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)