Uranium(VI) attenuation in a carbonate-bearing oxic alluvial aquifer

P. J. Nolan, Sharon E. Bone, Kate M. Campbell, Donald Pan, Olivia M. Healy, Marty Stange, John R. Bargar, Karrie A. Weber

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Uranium minerals are commonly found in soils and sediment across the United States at an average concentration of 2–4 mg/kg. Uranium occurs in the environment primarily in two forms, the oxidized, mostly soluble uranium(VI) form, or the reduced, sparingly soluble reduced uranium(IV) form. Here we describe subsurface geochemical conditions that result in low uranium concentrations in an alluvial aquifer with naturally occurring uranium in soils and sediments in the presence of complexing ligands under oxidizing conditions. Groundwater was saturated with respect to calcite and contained calcium (78–90 mg/L) with elevated levels of carbonate alkalinity (291–416 mg/L as HCO3). X-ray adsorption near edge structure (XANES) spectroscopy identified that sediment-associated uranium was oxidized as a uranium(VI) form (85%). Calcite was the predominant mineral by mass in the ultrafine fraction in uranium-bearing sediments (>16 mg/kg). Groundwater geochemical modeling indicated calcite and/or a calcium-uranyl-carbonate mineral such as liebigite in equilibrium with groundwater. The δ13C (0.57‰ ± 0.15‰) was indicative of abiotic carbonate deposition. Thus, solid-phase uranium(VI) associated with carbonate is likely maintaining uranium(VI) groundwater levels below the maximum contaminant level (MCL; 30 µg/L), presenting a deposition mechanism for uranium attenuation rather than solely a means of mobilization.

Original languageEnglish (US)
Article number125089
JournalJournal of Hazardous Materials
StatePublished - Jun 15 2021


  • Geogenic contamination
  • Groundwater
  • Uranium
  • Uranium carbonate minerals

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Uranium(VI) attenuation in a carbonate-bearing oxic alluvial aquifer'. Together they form a unique fingerprint.

Cite this