TY - JOUR
T1 - URMC-099 facilitates amyloid-β clearance in a murine model of Alzheimer's disease
AU - Kiyota, Tomomi
AU - Machhi, Jatin
AU - Lu, Yaman
AU - Dyavarshetty, Bhagyalaxmi
AU - Nemati, Maryam
AU - Zhang, Gang
AU - Lee Mosley, R.
AU - Gelbard, Harris A.
AU - Gendelman, Howard E.
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/5/5
Y1 - 2018/5/5
N2 - Background: The mixed lineage kinase type 3 inhibitor URMC-099 facilitates amyloid-beta (Aβ) clearance and degradation in cultured murine microglia. One putative mechanism is an effect of URMC-099 on Aβ uptake and degradation. As URMC-099 promotes endolysosomal protein trafficking and reduces Aβ microglial pro-inflammatory activities, we assessed whether these responses affect Aβ pathobiogenesis. To this end, URMC-099's therapeutic potential, in Aβ precursor protein/presenilin-1 (APP/PS1) double-transgenic mice, was investigated in this model of Alzheimer's disease (AD). Methods: Four-month-old APP/PS1 mice were administered intraperitoneal URMC-099 injections at 10 mg/kg daily for 3 weeks. Brain tissues were examined by biochemical, molecular and immunohistochemical tests. Results: URMC-099 inhibited mitogen-activated protein kinase 3/4-mediated activation and attenuated β-amyloidosis. Microglial nitric oxide synthase-2 and arginase-1 were co-localized with lysosomal-associated membrane protein 1 (Lamp1) and Aβ. Importatly, URMC-099 restored synaptic integrity and hippocampal neurogenesis in APP/PS1 mice. Conclusions: URMC-099 facilitates Aβ clearance in the brain of APP/PS1 mice. The multifaceted immune modulatory and neuroprotective roles of URMC-099 make it an attractive candidate for ameliorating the course of AD. This is buttressed by removal of pathologic Aβ species and restoration of the brain's microenvironment during disease.
AB - Background: The mixed lineage kinase type 3 inhibitor URMC-099 facilitates amyloid-beta (Aβ) clearance and degradation in cultured murine microglia. One putative mechanism is an effect of URMC-099 on Aβ uptake and degradation. As URMC-099 promotes endolysosomal protein trafficking and reduces Aβ microglial pro-inflammatory activities, we assessed whether these responses affect Aβ pathobiogenesis. To this end, URMC-099's therapeutic potential, in Aβ precursor protein/presenilin-1 (APP/PS1) double-transgenic mice, was investigated in this model of Alzheimer's disease (AD). Methods: Four-month-old APP/PS1 mice were administered intraperitoneal URMC-099 injections at 10 mg/kg daily for 3 weeks. Brain tissues were examined by biochemical, molecular and immunohistochemical tests. Results: URMC-099 inhibited mitogen-activated protein kinase 3/4-mediated activation and attenuated β-amyloidosis. Microglial nitric oxide synthase-2 and arginase-1 were co-localized with lysosomal-associated membrane protein 1 (Lamp1) and Aβ. Importatly, URMC-099 restored synaptic integrity and hippocampal neurogenesis in APP/PS1 mice. Conclusions: URMC-099 facilitates Aβ clearance in the brain of APP/PS1 mice. The multifaceted immune modulatory and neuroprotective roles of URMC-099 make it an attractive candidate for ameliorating the course of AD. This is buttressed by removal of pathologic Aβ species and restoration of the brain's microenvironment during disease.
UR - http://www.scopus.com/inward/record.url?scp=85046443802&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046443802&partnerID=8YFLogxK
U2 - 10.1186/s12974-018-1172-y
DO - 10.1186/s12974-018-1172-y
M3 - Article
C2 - 29729668
AN - SCOPUS:85046443802
SN - 1742-2094
VL - 15
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
IS - 1
M1 - 137
ER -