TY - JOUR
T1 - Virtual microscopy in cytotechnology education
T2 - Application of knowledge from virtual to glass
AU - Donnelly, Amber D.
AU - Mukherjee, Maheswari S.
AU - Lyden, Elizabeth R.
AU - Radio, Stanley J.
PY - 2012
Y1 - 2012
N2 - Background: Virtual microscopy (VM) is a technology in which the glass slides are converted into digital images. The main objective of this study is to determine if cellular morphology, learned through virtual microscopy, can be applied to glass slide screening. Materials and Methods: A total of 142 glass slides (61 teaching and 81 practice) of breast, thyroid, and lymph node fine needle aspiration body sites were scanned with a single focal plane (at 40X) using iScanCoreo Au (Ventana, Tuscan, AZ, USA, formerly known as BioImagene, California, USA). Six students including one distant student used these digital images to learn cellular morphology and conduct daily screening. Subsequently, all the students were tested on 10 glass slides using light microscopy (LM). At the end of the study, the students were asked to respond to an online survey on their virtual microscopy experience. The glass slide screening test scores of the participating students who were taught through VM and tested on glass slides (VMLM group) were compared with the last three classes of students who were taught through LM and tested on glass slides (LMLM group). Results: A non-parametric statistical analysis indicated no difference (P = 0.20) in the glass screening test scores between VMLM (median = 93.5) and LMLM groups (median = 87). The survey indicated that the annotated teaching slides and access to the VM, off campus, were well appreciated by the students. Conclusions: Although the students preferred LM, they were able to apply the cytological criteria learned through VM to glass slide screening. Overall, VM was considered a great teaching tool.
AB - Background: Virtual microscopy (VM) is a technology in which the glass slides are converted into digital images. The main objective of this study is to determine if cellular morphology, learned through virtual microscopy, can be applied to glass slide screening. Materials and Methods: A total of 142 glass slides (61 teaching and 81 practice) of breast, thyroid, and lymph node fine needle aspiration body sites were scanned with a single focal plane (at 40X) using iScanCoreo Au (Ventana, Tuscan, AZ, USA, formerly known as BioImagene, California, USA). Six students including one distant student used these digital images to learn cellular morphology and conduct daily screening. Subsequently, all the students were tested on 10 glass slides using light microscopy (LM). At the end of the study, the students were asked to respond to an online survey on their virtual microscopy experience. The glass slide screening test scores of the participating students who were taught through VM and tested on glass slides (VMLM group) were compared with the last three classes of students who were taught through LM and tested on glass slides (LMLM group). Results: A non-parametric statistical analysis indicated no difference (P = 0.20) in the glass screening test scores between VMLM (median = 93.5) and LMLM groups (median = 87). The survey indicated that the annotated teaching slides and access to the VM, off campus, were well appreciated by the students. Conclusions: Although the students preferred LM, they were able to apply the cytological criteria learned through VM to glass slide screening. Overall, VM was considered a great teaching tool.
KW - Cytotechnology
KW - education
KW - virtual microscopy
UR - http://www.scopus.com/inward/record.url?scp=84865171792&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865171792&partnerID=8YFLogxK
U2 - 10.4103/1742-6413.95827
DO - 10.4103/1742-6413.95827
M3 - Review article
C2 - 22675395
AN - SCOPUS:84865171792
SN - 0974-5963
VL - 9
JO - CytoJournal
JF - CytoJournal
IS - 1
M1 - A12
ER -