Systemic bone loss is associated with airway inflammatory diseases; yet, strategies to halt disease progression from inhalant exposures are not clear. Vitamin D might be a potentially protective approach against noxious respirable environmental exposures. We sought to determine whether vitamin D supplementation represents a viable lung- and bone-protective strategy following repetitive inhalant treatments with organic dust extract (ODE) or lipopolysaccharide (LPS) in mice. C57BL/5 mice were maintained on diets with low (1 IU/D/g) or high (10 IU/D/g) vitamin D for 5 weeks and treated with ODE from swine confinement facilities, LPS, or saline daily for 3 weeks per established intranasal inhalation protocol. Lungs, hind limbs, and sera were harvested for experimental outcomes. Serum 25-hydroxyvitamin D levels were tenfold different between low and high vitamin D treatment groups with no differences between inhalant agents and saline treatments. Serum calcium levels were not affected. There was no difference in the magnitude of ODE- or LPS-induced inflammatory cell influx or lung histopathology between high and low vitamin D treatment groups. However, high vitamin D treatment reversed the loss of bone mineral density, bone volume, and bone micro-architecture deterioration induced by ODE or LPS as determined by micro-CT analysis. Bone-resorbing osteoclasts were also reduced by high vitamin D treatment. In the low vitamin D treatment groups, ODE induced the greatest degree of airway inflammatory consequences, and LPS induced the greatest degree of bone loss. Collectively, high-concentration vitamin D was protective against systemic bone loss, but not airway inflammation, resulting from ODE- or LPS-induced airway injury.

Original languageEnglish (US)
Pages (from-to)46-59
Number of pages14
JournalImmunologic Research
Issue number1
StatePublished - May 1 2015


  • Bone interactors-other systems biology
  • Osteoporosis disease disorder
  • Preclinical animal models

ASJC Scopus subject areas

  • Immunology


Dive into the research topics of 'Vitamin D supplementation protects against bone loss following inhalant organic dust and lipopolysaccharide exposures in mice'. Together they form a unique fingerprint.

Cite this