TY - JOUR
T1 - Voltage-dependent Ca2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles
AU - Garland, Christopher J.
AU - Bagher, Pooneh
AU - Powell, Chloe
AU - Ye, Xi
AU - Lemmey, Hamish A.L.
AU - Borysova, Lyudmyla
AU - Dora, Kim A.
N1 - Publisher Copyright:
© 2017 The Authors.
PY - 2017/7/4
Y1 - 2017/7/4
N2 - Vascular smooth muscle contraction is suppressed by feedback dilation mediated by the endothelium. In skeletal muscle arterioles, this feedback can be activated by Ca2+ signals passing from smooth muscle through gap junctions to endothelial cells, which protrude through holes in the internal elastic lamina to make contact with vascular smooth muscle cells. Although hypothetically either Ca2+ or inositol trisphosphate (IP3) may provide the intercellular signal, it is generally thought that IP3 diffusion is responsible. We provide evidence that Ca2+ entry through L-type voltage-dependent Ca2+ channels (VDCCs) in vascular smooth muscle can pass to the endothelium through positions aligned with holes in the internal elastic lamina in amounts sufficient to activate endothelial cell Ca2+ signaling. In endothelial cells in which IP3 receptors (IP3Rs) were blocked, VDCC-driven Ca2+ events were transient and localized to the endothelium that protrudes through the internal elastic lamina to contact vascular smooth muscle cells. In endothelial cells in which IP3Rs were not blocked, VDCC-driven Ca2+ events in endothelial cells were amplified to form propagating waves. These waves activated voltage-insensitive, intermediate-conductance, Ca2+-activated K+ (IKCa) channels, thereby providing feedback that effectively suppressed vasoconstriction and enabled cycles of constriction and dilation called vasomotion. Thus, agonists that stimulate vascular smooth muscle depolarization provide Ca2+ to endothelial cells to activate a feedback circuit that protects tissue blood flow.
AB - Vascular smooth muscle contraction is suppressed by feedback dilation mediated by the endothelium. In skeletal muscle arterioles, this feedback can be activated by Ca2+ signals passing from smooth muscle through gap junctions to endothelial cells, which protrude through holes in the internal elastic lamina to make contact with vascular smooth muscle cells. Although hypothetically either Ca2+ or inositol trisphosphate (IP3) may provide the intercellular signal, it is generally thought that IP3 diffusion is responsible. We provide evidence that Ca2+ entry through L-type voltage-dependent Ca2+ channels (VDCCs) in vascular smooth muscle can pass to the endothelium through positions aligned with holes in the internal elastic lamina in amounts sufficient to activate endothelial cell Ca2+ signaling. In endothelial cells in which IP3 receptors (IP3Rs) were blocked, VDCC-driven Ca2+ events were transient and localized to the endothelium that protrudes through the internal elastic lamina to contact vascular smooth muscle cells. In endothelial cells in which IP3Rs were not blocked, VDCC-driven Ca2+ events in endothelial cells were amplified to form propagating waves. These waves activated voltage-insensitive, intermediate-conductance, Ca2+-activated K+ (IKCa) channels, thereby providing feedback that effectively suppressed vasoconstriction and enabled cycles of constriction and dilation called vasomotion. Thus, agonists that stimulate vascular smooth muscle depolarization provide Ca2+ to endothelial cells to activate a feedback circuit that protects tissue blood flow.
UR - http://www.scopus.com/inward/record.url?scp=85022073035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85022073035&partnerID=8YFLogxK
U2 - 10.1126/scisignal.aal3806
DO - 10.1126/scisignal.aal3806
M3 - Article
C2 - 28676489
AN - SCOPUS:85022073035
SN - 1937-9145
VL - 10
JO - Science's STKE : signal transduction knowledge environment
JF - Science's STKE : signal transduction knowledge environment
IS - 486
M1 - aal3806
ER -