Water-promoted O2 dissociation on small-sized anionic gold clusters

Yi Gao, Xiao Cheng Zeng

Research output: Contribution to journalArticlepeer-review

46 Scopus citations


Although thermodynamically O2 favors dissociative adsorption over molecular adsorption on small-sized anionic gold clusters (except Au 2-), O2 dissociation is unlikely to proceed under ambient conditions because of the high activation energy barrier (>2.0 eV). Here, we present a systematic theoretical study of reaction pathways for the O2 dissociation on small-sized anionic gold nanoclusters Au n- (n = 1-6) with and without involvement of a water molecule. The density functional theory calculations indicate that the activation barriers from the molecular adsorption state of O2 to dissociative adsorption can be significantly lowered with the involvement of a H2O molecule. Once the O2 dissociates on small-size gold clusters, atomic oxygen is readily available for other reactions, such as the CO oxidation, on the surface of gold clusters. This theoretical study supports previous experimental evidence that H2O can be used to activate O2, which suggests an alternative way to exploit catalytic capability of gold clusters for oxidation applications.

Original languageEnglish (US)
Pages (from-to)2614-2621
Number of pages8
JournalACS Catalysis
Issue number12
StatePublished - Dec 7 2012


  • O dissociation
  • nanocatalysts
  • small-sized anionic Au clusters
  • water promotion

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry


Dive into the research topics of 'Water-promoted O2 dissociation on small-sized anionic gold clusters'. Together they form a unique fingerprint.

Cite this